DEPARTMENT OF DEFENSE
DEFENSE SCIENCE BOARD

DESIGN AND
ACQUISITION oF SOFTWARE
FOR DEFENSE SYSTEMS

- “\“-;4-.(.
e N\ 777;
-» N

L

CLEARED FOR OPEN PUBLICATIO
February 14, 2018
DEPARTMENT OF DEFENSE
OFFICE OF PREPUBLICATION AND SECURIT

OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING
WASHINGTON, D.C. 20301-3140

Thisreport is a product of the DefenseScienceBoard (DSB).The DSBis a Federal Advisory
Committeeestablishedo provideindependentadviceto the Secretaryof Defense Statements,
opinions, conclusions,and recommendationsin this report do not necessarilyrepresentthe
official positionof the Departmentof Defense.

OFFICE OF THE SECRETARY OF DEFENSE
3140 DEFENSE PENTAGON
WASHINGTON DC 20301-3140

DEFENSE SCIENCE
BOARD

MEMORANDUM FOR UNDER SECRETARY OF DEFENSE FORESEARCH AND
ENGINEERING

SUBJECT: Final Report of the Defense Science Board (DSB) Task FordeeoDesign and
Acquisition of Software for Defense Systems

| am pleased to forward the final report of the DSB Task Force on the Design and Acquisition
of Software for Defense Systems, chaired by Dr. William LaPlante and Dr. Robert Wisnieff.

The Task Force has made seven recommendations on how to improve software acquisition in
defense systems. A base recommendation underlying all others is to emphasize the importance of
the software factory and to incorporate the software factory as a key ewaloaterion in the
source selection process. Next, the Department of Defense (DoD) and its defense industrial base
partners need to adopt continuous iterative development best practices. The study recommends
DoD adopt best practices on risk reduction aratrics in formal program acquisition strategies.
Software strategies must be better incorporated in current and legacy programs from development,
production and sustainment. The Task Force recommends ways to improve the software and
acquisition workforce in both software development expertise and the broader functional
acquisition work force. Next, software is immortal and contracts must be framed to allow for
software sustainment. Finally, the Task Force recommends further research into machine learning
and the implementation of an independent verification and validation process for machine learning
and autonomy in software systems.

Software is a crucial and growing part of weapons systems and the Department needs to be
able to sustain immortal softweamdefinitely. The Task Force concluded that the Department of
Defense would benefit from the implementation of continuous iterative development best practices
as software becomes an increasingly important part of defense systems.

| concur withthe Taskor cedés conclusions and recommend

Secretary of Defense.

Dr. Craig Fields
Chairman, DSB

THIS PAGE LEFT INTENIONALLY BLANK

OFFICE OF THE SECRETARY OF DEFENSE
3140 DEFENSE PENTAGON
WASHINGTON DC 20301-3140

DEFENSE SCIENCE
BOARD

MEMORANDUM TO THE CHAIRMAN, DEFENSE SCIENCE BOARD

SUBJECT:Final Report of the Defense Science Board Task Force on the Design and Acquisition
of Software for Defense Systems

Attached is the final report of the Defense Science Board Task Force on the Design and Acquisition
of Software for Defense Systems. ThesK&orce was formed to determine whether the iterative
development practices in the commercial world are applicable to the development and sustainment
of software for the Department of Defense (DoD). The study Terms of Reference stipulated the
Task ForceIsould:

1 examine the current state of DoD software acquisition and recommend actions for the DoD
and its suppliers;

1 consider development, test, and evaluation of learning systems;

{ contrast and compare DoD and commercial software development and determine wha
commercial software development capabilities military systems should embrace;

1 identify impediments in DoD requirements, contracting, and program management and how
they might be removed,;

fdet er mi ne i f AAgi |l eo sof twar e anck déntifti ques
impediments;

1 determine if the commercial concept of a minimum viable product should be adopted by the
DoD;

1 determine best management approaches to achieve rapid and effective software upgrades,
including an analysis of modular, open architeet

1 look at lessons learned from recent software challerggs@CX, F35); and

1 provide recommendations to ensure rapid adoption of cognitive capabilities as they mature.

The Task Force assessed best practices from commercial industry as well esesueiths the

DoD. Commercial embrace of iterative development has benefited bottom lines and cost, schedule,
and testing performance, while the Department and its defense industrial base partners are
hampered by bureaucratic practices and an existingrgmentimposed reward system. The Task

Force concluded that the Department needs to change its internal practices to encourage and
incentivize new practices in its contractor base. The assessment of the Task Force is that the
Department can leverage bgstactices of iterative development even in its mission critical
software systems.

The Task Force made seven recommendations on how to improve software acquisition in defense
systems. Our base recommendation, which underlies allreit@nmendations, is the importance

of the software factoryt he ef fi cacy of an offerords softwa
criterion in the source selection process for software. Next, the Department and its defense
industrial base partners netedadopt continuous iterative development best practices (continuing
through sustainment) for software. The Task Force recommends implementing certain best
practices on risk reduction and metrics in formal program acquisition stratgiesll as
incorpaating better software strategies in current and legacy programs in development,
production, and sustainment. The Task Fduggher recommends workforce actions, both in
software development expertise and in broader functional acquisition. The Task Force
acknowledges that software is immortal, #merefore, the Task Forpeovides recommendations

for software sustainment. Finally, the Task Fommmmends$urther study of machine learning,
including the implementation of an independent verification alidiation process for machine
learning and autonomy in software systems.

Software is a crucial and growing part of weapons systems and the national security mission, and
the DoD must address its ability to build and sustain software continuously anthitetief
Overall, the Task Force concludes that the Department can improve its methods of acquiring,
building, and incentivizing software in defense systems and will greatly b&osgfialtering some

of its acquisition practices and adopting continuoaimitve development best practices.

WUNIUA Red Vo

Dr. William LaPlante Dr. Robert Wisnieff
Co-Chair Co-Chair

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

Table of Contents

EXECULIVESUMMIAIY. ... eea b nr e e e e 1

O] 0 To 1§ [ox 1 o] o AT TP 3

1.1 The Importance of Software in Defense SyStemS.........cooocviiiiieiiiiiiiieeeee e 3

DOD SOftWare GIrOWHNL..........uviiiiiiiiiiiiiee e ee s 3

DoD Software RiSK ASSESSMENT.........cceeiiiieieiieeie e 4

1.2 Silicon Valley Baedeker: Theories of Software Development............ccccoovvvvveeeeennn 5

Waterfall DEeVEIOPMENL.........eeiiieiieeiieee e 6

AQIlEe DEEIOPMENL......eeiiiiiiiie ittt e e as 6

AGIIE DEVOIPS. ... a e e e e e e e e 6

Iterative Development: Agile, Spins, and Spirals...............cccoeccccviiiiiniiieiinnieeeee. 6

2. Finding: Continuous lIterative Development for theepartment of Defense...................... 7

2.1 DOD SOftWare PrOCESSES . ..cii i i i e i e e ee e e et eee e r e e e e e e e e e e aaaaaaaaaaeens 7

2.2 Commercial SOftWArE PrOCESSES.uuuuuiiiiiiiiiiiiiieiiietiieeerertaaeaaeaaeeeeeeeeaassseaassan e 7

A RS0 10T V(T = Tod (0] 4 YO 9

2.4 AAAESSING CYDRI ... ittt e e e e e e rr e e e e e e aae 10

2.5 Importance of ArChILECIUIE..........uuiiiiiiiiieieee e 11

2.6 The Right Conditions for Iterative Development in Defense Systems.................. 11

2.7 The Cse For and Against Iterative Development for DoD Systems...................... 14

3. Finding: Commercial, the DoD, and Its Partners: Case Studies.........cccceeeeeeivieeeenneenn. 17

3.1 Differences and Similarities of DoD and Commercial Software Development.....17

3.2 Defense Prime Contractors State of Rlay.........ccccccvviiiiiiiiiiiiiiieiieecceceeeceeeeeeeeeea, 18

4. Finding: Acquisition Strategies and Contracting Approaches...........ccccccvvvvvvvieiiiinnnnnnns 20

4.1 Software Acquisition Misalignment..........ccccccee oo 20
4.2 Defense Acquisition Could Use Continuous lterative Development in Many Types of

e 0T = 11 01PN 22

Ongoing Sma#cale Major Development Programs (Hybrid Model)................... 22

Ongoing Largscale Major Development Programs..............ueeveeeveeeeeeeeereeeeeeeeenns 22

NEW PrOQIAMS. ... ittt e e e e e e e e e e et bt e e e e e e aaeeeeesnnnens 22

(I CTo = (03 VA o (oo | = 10 01 TP RSPPPPUTRPPPPPIN 23

LT S {=Tod0] 410 0= 0 o F= 1[0 L= 24

Recommendation 1: SOftware FaCOLY..........c.uuveiiiiiiiiieiieee e 24

Recommendation 2: Continuous Iterative Development............ccccccuveveiivieiieeieeeeeeeen. 24

Recommendation 3: Risk Reduction and Metrics for New Programs........................ 25

Recommendations 4: Current and beg Programs in Development, Production, and

YU = 1] 0 0= o 1 U 25

Recommendation 5: WOrKIOIrCE........ccoociiiieeeee e 26

Recommendation 6: Software is Immortgboftware Sustainment.............cccccvvvvvnnnnnn. 27

Recommendation 7: Independent Verification and Validation for Machine Learning.27

DSB Task Force dDesign and Acquisition of Software for Defense Systems Table of Contentki

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

Appendix A: Task Forceelims of Reference............oieiiiiiiiiicei e, A-1l
Appendix B: Task Force Membership...........ooooiiioiiiii e B-1
Appendix C: RECOMMENUALIONS...........couuiiiiii e e ieiee e e e e e e e e e e Gl
Appendix D: Briefings RECEIVEA............ouviiiii e e D1
Appendix E: Software Factory Source Selection Criteria SUgQeSsHONS..............eevvvvveen... El
Appendix F: Acronyms and Abbreviated TeIrmS...........coovvviviiiiiiimiiiniiiiiee F1
FaY o] 01T oo [R €1 (0117 14V Gl
P o] o L= o 0t TR o [ST H-1

List of Figures

Figure 1. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code

(SLOC) in AVIONIBBIWATE......uueiieeiiiiiieeeeee e 4
Figure 2. Software Risk Assessed by DoD Program QffiGe........ccccccvvvivviiiiiiiiiiieeeieeeeeeeenn, 5
Figure 3. Theories of Software Development.........iie e, 5
Figure 4. DoD Sattare Process (Waterfall)...........ccoooiiiii e 7
Figure 5. Commercial Software Process (Continuous Iterative Development).................. 8
FIQUre 6. SOMWAIE FACIONY.....ccii ittt e e e e e 9
Figure 7. Addressing Cyber in the Software FacClOry...........cccuvviiiieiniiiiiiiee e 10
Figure 8. Harvard Business Review: Embracing. Agie............oovvveiiiiiiiiiie e 12
Figure 9. Favorable Conditions for Iterative Developnoa the F35..........ccccooviiiiiiiiiinns 13
Figure 10. Unfavorable Conditions for Iterative Development onB&.F.......................... 13
Figure 11. Dyba and DINgSOYr MEIBIVEY.............coeeeeeeeeeeiee e 15
Figure EL. Software Factory in Source SeleCon..........cccccociiiiiiiiiiiiiiiieeeeeee e E1

List of Boxes

Box 1: Facebook and Google Best PractiCes..........cccoeviiiiiiiii e 17
Box 2: Iterative Developmenmtith Fixed Price: KEBA TanKer..........cccoeeeeeeeeeiiiiiiiieeeeeeeens 18
Box 3: Iterative Development for the National Security Mission: SpaceX.........ccccccceevnnne 19
.2E nY blGA2yltf {SOdNAGe ! 3SyOétatiors.a...{.dzODS & & Fdzf f ¢
Box 5: National Reconnaissance Office Best Practice: Database of Historic Cost Actuals for
Software Development Waterfall or Agile...........vvviiiiiiiiiiieieeiiiiiiiiieeeeeeeeeeeee, 22
Box 6: Example of Legacy Program Moving to Iterative Developfemahawk................... 23

DSB Task Force dDesign and Acquisition of Software for Defense Systems Table of Contentsii

file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977222
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977223
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977224
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977225
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977227

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

Executive Summary

The goal othe Defense Science BoafldSBYask Force on Design and AcquisitibBaftware for
Defense Systems wdo determine whether iterative software development practices evoived
the commercial world are applicable to the development and sustainment of software for the
Department of DefenséDoD)

Software has become one of the most important components ofuri A 2y Q& ¢S LRy a &ae 3
and it continues to grow in importanc8otware defines the way our systems see, communicate,

and operate in combat Designand acquisitiondecisionsat the beginning of the software

development procesBequently have farreaching and longerm effectsthat impact the weapon
aeaisSyQa the patlafi@idaddd@s aBilyy to adapt to changing requirements

Sftware development in the commercial world has undergone significant change in thEblast
years while development of software for defense systems kastinued to use techniques
developed in the 1970s through the 1990draditionald 2 | (i S Ndfwatefdévelopment
practices(i.e., determining a functional specification, writing the softwarend testing the
software to the functional specificatiQave evolvedin the commercial worldnto an iterative
process calleddAgilet or écontinuous iterative developmeriiwhere a team develops software
in smaller blocksghat can be incrementally evaluated yuser community. Tis incremental
approach allowsipdatesand improvements$o be rapidly incorporated into the softwara many
casesupdates are made every dayheDoD, however, still largely buys and develops software
developed usinghe slower traditional Waterfall approachthat was mostlyabandonedby
commercial companiegears ago

Modern commercial softwardevelopment best practices use software factsrighich are a set

of software tools that programmers use to write their code, confirm it meets style and other
requirements, collaboratewith other members of the progtmming team, and automatically
build, test, and document their progress. This allawams of programmers to do iterative
development with frequent feedback from user&dditionally, anumber of newtools and
techniques are being utilizday the commerciasector,including

automation at scale

continuous development throughout the life of the product

increased and cheaper computing power

static, dynamic, and fuzz testing technigu&ghichhave allowed substantial automated
software testing and

open source which leverages a larger community of developecs create reusable
components and development tools

These advances allow software productanmd sustainmento be done rapidlyand continuously,
enablinggreater flexibility as requirementshange.Harnessing these techniques and practices
hasyieldedresultsin many commercial arearom mobile and web technologies to banking,
finance, and trade.

DSB Task Force design and Acquisition of Software for Defense Systems Executive Summaryl

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

The DoD can leverage? R lca@n@érciadevelopment best practices to its advantage, including
on its weapos systems.Doing sowill enablethe DoD to move from aapabilitiesbased
acquisition modeto a threatbased acquisitiomodel Making this transition is necessary if the
United States is to maintain its technological superioaitg counterrapidly growing adversary
capabilitiesOur adversariesare acquiringcapabilities not previously anticipateshdare doing so

at a pacethat now challengs U.S technologicalsuperiority. The DoD needdgo return to a
modernized version ofhreat-based assssments The United States must hatke ability to
quickly respondto adversary advancemen@nd updateour systemsaccordingly.Rapid and
continuoussoftware developmentvill be essentialo achiewngthis outcome.

The defense contractor baseas not adopted many of thproven commercial sectaoftware
developmenttechniquesdue to DoD culturejnternal practicesand a governmentapproach to
contracting that disincentivzes their adoption The DoD develops software and associated
contractingbased onupfront detailed systems requirements and specificatimm the entire

completed systeman approachhat is inadequatdi 2 Y SS G (2 RIThe(Deparfentf £ Sy 3 S & «

must changethe structure of its contracts toincentivizebest practices in its comactor basein
orderto take advantage of these modern software development practices.

Problems associated with software development continue to plague major DoD acquisition
programs.Thisresults in long delays in fielding, significant cost overruns,,andsome cases
program cancellation. The problems appear to be caused by the same software development
issues thahaveoccurred in programever the last two decade3he Task Forctrongly believe
greater adoption of continuous iterative developmemidaits associated best practiced! result

in significantly improved acquisition performandhe assessment of the Task Forcthé an
iterative approachto software development and sustainment is applicabléh@DoD and should

be adopted as quicklgs possible.

DSB Task Force design and Acquisition of Software for Defense Systems Executive Summarty2

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

1. Introduction

1.1 The Importance of Software in Defense Systems

Software is a crucial and grawg part of weapons systems and the national security mission.
While recognized as central to enterprise business systems and related information technology
(IT) services, the role software plays in enabling and enhancing weapons systems often goes
underappeciated.

Today,manyof the capabilities provided by our weapons systems are derived from the software

of the system, not the hardwarelhis shift from hardwarenabled capabilities to software

enabled capabilities is increasing quicldga 2017 paperpublished by the Institute for Defense

Analyseshotes dThe Department of Defense experiencing an explosive increase in its demand

for softwareA YL SYSYGSR TSI {id2NBa Ay 6SFHLRY aeaidSyaxiy
productivity and industrial base capity have not been growing as quickly.

In new weapons systems, software has become a significant part oflélelopment and
gualification procesdmproving functionality and securityan bedelayed or even preventeby

the inability to do thenecessay testing maintaining the completestinginfrastructure {.e.,both

human and computing) is a growing issue.

Softwaredoes not onlyaffect new weapons systems under development. Legacy systemeh
as Tomahawk, A6, and FL8, continue beyond design & due largely to improvements via
software upgradeswhile originaldevelopment of these legacy systemsed traditional software
development practicescurrent upgradefavebegunto employiterative development practices
includingfor basicsustainment

Unlike hardware, aftware never diesLaying the groundwork to allow software improvement
over the life of a weapons system is a strategic imperatiltéizing development practices that
enable continuous upgrade of capabilignsures software can be ageed to threats and
opportunities unanticipated during the specification of the systenThe DoD must lay the
groundwork now for software to meet the demands of the future

DoD Software Growth

One method of estimating the complexity, cost and schedule caedall centrality of software is

to count the source lines of code (SLOC), often used as a basis of cost estifigenethod has

limitations ¢ different languages and programming systems result in different SLOC counts, and

industry no longer considerthis techniquecredible. Even sp SLOC provides insight into a

a2Fl0ol NB daeadsSyqQa aAil S FryR GKS {[h/ X F2NIYlye 48§

15 AR ad® ¢l GST a{2FGst NE t NRRdzO(A @dtiiute for¢dDeBngeRa | YR L
AnalysegMarch 2017): iii.
2 This procedural software cost estimation model is referred to as the Constructive Cost Model (COCOMO).

DSB Task Force dDesign and Acquisition of Software for Defense Systems | 3

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

last four decadedrigurel illustrates this trend for avionics softwar€hisgrowth in SLOC skwvs
how critical softwardsto the capabilities of advanced weapons systems.

Airborne + Support
Software

30,000 ——
28,000 7
26,000 /
24,000 Airborne Software
22,000 /
"% 20,000 Vi
£ 18,000 A i/ 20,300
£16000 \ 7
£ 14,000 /
S 12,000 7
10,000
d 8000
8,000 6,800 20
6,000 9,200
gggg 1,700 '
) 135 236 1,000
F-16A Block 1 F-16D Block 60 P-3C F-22 Raptor F-35 Lightning Il F-35 Lightning Il F-35 Lightning |
(1974) (1984) (1996) (1997) (2006) Block 2B Block 3F est.
(2016 AF 10C) (2017)

| —

Figurel. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code (SLOC)
in Avionics Software

DoD Software Risk Assessment

In the acquisition of new systems, software drives program risk for approximately 60 percent of
programs (shown irFigure 2). Risks come in many formé@/hen building systems with new
capabilities, it is not possible to anticipate all of the challengesl handson experience is
obtained, not only in terms of basic operations but also for concepts of operatidntactics,
techniques, and procedures. Unexpected complications can arise from unanticipated
interdependencies within the software itself, eft driven by the underlying architecture. A
current DoD acquisition best practice is to reduce project risk by specifying the function of the
software in detail at the beginning of a program. However, when such a system is tested,
additional requirementsytpically are identified, thus requiring substantial effort to implement.

3 The informationin this chart was compiled fror@hristian Hagen, Jeff Sorenson, Steven Hurt, aam D
Wall, "Software: The Brains Behind U.S. Defense Systems,” A.T. Kearney, 2012,
https://www.atkearney.can/documents/10192/247932/SoftwareThe Brains Behind_US_Defense Syste
ms.pdf/69129873eecc4ddcb798c198a8ff1026 SLOC for-E6 and F22 are at first operational flight.
SLOC for-B5 Block 2B and 3F plus support softwprevidedby the USD(R&E) office.

DSB Task Force Besign and Acquisition of Software for Defense Systems | 4

https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE

BOARD

FY14 - FY16
s
a4
- 3
=]
=]
—=
T =
=
-
=N
(1Y o'\",
R < e Conse
quence
2 S
Software not in top program risks

Software assessed among most frequent and most critical challe

driving program risk on ~60% of acquisition programs.

nges,

Figure2. Software Risk Assessed by DoD Program Office

1.2 Silicon Valley Baedeker: Theories of Software Development

A number of software theories have evolved over time regarding software development.
Assessing these different theories often leads to heated arguments about the best approach. This
reportusesi KS GSNY aO2yGAydz2dza AGSNI GAQPS RSGSt2LIYSy (¢

DoD. Below is a Baedeker, or guide, to the various software approaches.

For more definitions of software terms, please see the glossakppendix G

How did we get here?
Shift from Waterfall to Agile, from Silos to Collaboration

Waterfall

B ==

D </> & &
Requirements q Dev I \ Test l \ Ops

Req + Dev + Test @
o Business Analysis D ‘ oo
) <[>
% Quality Assurance &
Iterations 1y 2 1 3 1 4 1 5

Req + Dev + Test + Ops @
L L[[]]] E
EEEEEEEEEEEEEEEEEEEEE

ing

“
o}
Q
>
]
(a]
=
‘o
<

Continuous
Everythi

Figure3. Theories of Software Developmént

AGNJ LIKAO |RIFELIISR FNRBY ¢AY 5A2ljdAay2>
Hewlett PackardEnterprise, FedInsider, Intéy.

a58dh LAY

DSB Task Force Besign and Acquisition of Software for Defense Systems

CNI yATF2I

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

Waterfall Development

The traditional approach to software development Waterfall development Waterfall
development begins with writing down the full function specification. It is used to write the
program as well as thtests. When the software passes all of the tests, it is considered finished
and ready for delivery to the user.

Agile Development

Agile developmer® | £t 42 OFff SR GAGSNI GAGBSE RSGSt2LIVSy i ¢
factory. Development and testing sprintsa set period of time during which specific work is

completedg allowa team to do rapid iterations of development, obtain user feedback, and adjust

goals for the next increment. This framework allows for continuous dewedop throughout the

life of the product.

Agile DevOps

DevOps entails running multiple Agile projects simultaneously to develop the next increment of
an application. DevOps requires careful architectural design to avoid unintended complications
by concurren efforts. In general, this requires carefully defining the module and subsystem
interfaces; thorough testing of interfaces is mandatory.

Iterative Development: Agile, Spins, and Spirals

Iterative development is the ineluctable process imposed by use mroduct ¢ especially a
software productg that reveals a shortcoming or suggestsiamprovement. What distinguishes
traditional iterative development from Agile approaches to software design and development is
the velocity and granularity of the iterationsn venerable software production methodology
(Waterfall development), an iteration commences after field deployment and use. New
development approaches (i.e., Agignin,spira) uncover and deal with flaws and opportunities
much earlier in the proceskading to rapid development of a more robust product delivered to
the field.

DSB Task Force dDesign and Acquisition of Software for Defense Systems | 6

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

2. Finding: Continuous lIterative Development for the Department of
Defense

2.1 DoD Software Processes

The standard software development prag® in the BD follows the linear path illustrated in
Figured: requirements ardinalized anddlocumengd, schedule and cost setat the beginning of
the program (often using legacy SL@@sed models and a preliminary design review is
performed leading up to the ralase of the developmentequest for proposal RFP. After
Milestone B andontractaward software isdevelopedusing resources determined by estimating
the SLOC of each section of softwdfaally, the system is testegrior to relea®. This approach
reFSNNBR G2 & a2 | dosNaied flf ofcdintngr8al andefeysdotveare
development until the early 2000s.

DoD Software Process (Waterfall)
[Focus on end product]

- (5-7 years) -
Requirements RFP Release Milestone B Award Milestone C

(e o— o »— “
User acceptance 2
. P o Release the
4 testing: measure [
= product to users

Document Preliminary design Write the software,
1 requirements, plan, 2 review of system 3 measure progress
defects found/solved fg]

schedule, cost design using SLOC

Complete

Figured4. DoD Software Process (Waterfall)

2.2 Commercial SoftwareProcesses

The growth of mobile computing in the 2000s forced commercial organizations to look for ways
to write softwarewithout knowingall of the requirementahead of timewhile anticipatinguture
security and testing concernsowait for certainty aboutrequirementsmeantcompaniedosing

their markets. The goal was to find waye iteratively develop software, extending capability
incrementally over time.

Figure5illustrates the cyclical process of continuous iterative developnsentimonlyemployed

in the canmercial sector Goals and features are identified the beginning but requirements

are notstrictly setasin the usualDoD procesdUser feedback is used to establish goals of each
AGSNI GA2Yy 00Kttt SR | &aLINR y G dafiond ofthe minignunbvaatiie: 0 £ A & K
product (MVP)The software team writes the software usindpighly automated tool chain that
rebuilds the system and tests the resulting changes every night. If issues are found, the developers
make the necessary changes the next dBlye continuous development process, which lasts
weeks, delivers an MVP to thearsat the end of eachieration. Within the log, there are nightly

builds and testsincluding durable, automated granular, performance, secugtyd capability

tests that facilitate confidence when chargyare subsequently introduced®oblems can be
identified daily. The goal of this process is delivering a series of productprthatie enhanced
functionality, facilitating ongoing safe modification, aethablingusersto evaluateperformance

that drives thenext iteration

DSB Task Force dDesign and Acquisition of Software for Defense Systems | 7

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

Commercial Software Process (Continuous Iterative Development)
[Focus on series of MVPs]
Create ranked feature list,
system architecture
m
to users
Set goals of 1st sprint to
é implement top features]

Continuous
Coding: team dynamically adjusts Development Develop parts of minimum
goals based on daily build/test & Process viable product that can be

weekly evaluations { 6 week Joop) tested with users

\ N;\imfy Bufffd /
Revise code based on peer review and
test findings (Engage users in this
process if possible)

Figureb. Commercial Softare Process (Continuous Iterative Development)

Set goals for
6 next sprint

The dbcreaséan the cost of computingnade this iterative development approachsteffective
Previouslyit wastoo expensive taun a computinginfrastructure thatcould build and test the
entire project eery night. Larggrojectswould conpile the entiresoftware systemevery sixto
nine months, makingit more difficult for a programmer to see dependenc@sother problems
with the systemThisiterativeand more automateepproachinitially wasembracedn the mobile
spaceits success letb widespreadadoptionacross most areas of the commeraigrld.

Going from one MVP to anothenablesspiral development. Théessons learnediuring an

iteration cycle are usedto set key features and changes for timext iteration. Software

architecture is key tenablingthis approachand must be designed to allownd account for
changes. Térefore, function must beassignedto modulesto enable likely extensionsand

evolution Successfutlevelopmentsbecome visibleén the product while unsuccessfahesare

discarded Companie®ften amelioratethe risk of unsuccessfarchitecturesby starting multiple
groups with different architecturesnddown-selectingvhen the best architecture getermined

which isnot an eay task.

DSB Task Force dDesign and Acquisition of Software for Defense Systems | 8

DEPARTMENT OF DEFENSE | DEFENSE SCIENCE BOARD

2.3 Software Factory

Automated WIS
Build

Automated Testf Dynamic Test
Fuzz Testing

Documentation

k.

Figure6. Software Factory

Underlying iterative development is tieaftware factory illustrated inFigure6. Lowcost cloud
based computing is used to assemble a setawfis (see Appendix Efor an example list of
applications)that enable the developers, userand management to work together on a daily
tempo. The goal is tensure the code meets requirements by building and testing the application
automatically every day and feeding back/assues to the developer responsible fbe code.A
source code repositorgrchivescurrent and past versions of the applicativhile eachdeveloper
works on a local copy of the codéfter attaining astableversion it isuploadedto the repository
along with extensive tests and test datand documentationlisting the added features and
resolved issuedn mostorganizationscode is peer reviewegrior to the upload Peer reviewis
especially useful for new members of the teaallpwing them to learn thenuances of the
software systentonventions

Once the code igploaded a style checkeensures there are no violations of coding conventions
andthen the software systenis built. For interpreted languages such as Python or 3thw&ftbuild
processinvolves static testingi.e., no undeclared variable, no variables being called after the
variable has been discardpdaind syntax checking. For compiled languagesh asC, a
compilation of the source code to executable codeinvoled. Individual modules then go
through unit testing which validates resolution of previously identifiedssuesas well as
compatibility with required functionalityin a newproject, the first software written iften the

unit testsand, in fact, comprehensive unit testan offer the best insight into functiohe full
build is dynamically testeldy executing usacenarios identified as edge cases. Fuzz testalgas
usedt giving random inputs of all allowed valuesto look forinstanceswhere unexpected

DSB Task Force dDesign and Acquisition of Software for Defense Systems | 9

